44 research outputs found

    An adaptive hybrid genetic-annealing approach for solving the map problem on belief networks

    Get PDF
    Genetic algorithms (GAs) and simulated annealing (SA) are two important search methods that have been used successfully in solving difficult problems such as combinatorial optimization problems. Genetic algorithms are capable of wide exploration of the search space, while simulated annealing is capable of fine tuning a good solution. Combining both techniques may result in achieving the benefits of both and improving the quality of the solutions obtained. Several attempts have been made to hybridize GAs and SA. One such attempt was to augment a standard GA with simulated annealing as a genetic operator. SA in that case acted as a directed or intelligent mutation operator as opposed to the random, undirected mutation operator of GAs. Although using this technique showed some advantages over GA used alone, one problem was to find fixed global annealing parameters that work for all solutions and all stages in the search process. Failing to find optimum annealing parameters affects the quality of the solution obtained and may degrade performance. In this research, we try to overcome this weakness by introducing an adaptive hybrid GA - SA algorithm, in which simulated annealing acts as a special case of mutation. However, the annealing operator used in this technique is adaptive in the sense that the annealing parameters are evolved and optimized according to the requirements of the search process. Adaptation is expected to help guide the search towards optimum solutions with minimum effort of parameter optimization. The algorithm is tested in solving an important NP-hard problem, which is the MAP (Maximum a-Posteriori) assignment problem on BBNs (Bayesian Belief Networks). The algorithm is also augmented with some problem specific information used to design a new GA crossover operator. The results obtained from testing the algorithm on several BBN graphs with large numbers of nodes and different network structures indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive simulated annealing. Its effect, however, is more profound for problems with large numbers of nodes, which are difficult for GA alone to solve

    Investigating heuristic and meta-heuristic algorithms for solving pickup and delivery problems

    Get PDF
    The development of effective decision support tools that can be adopted in the transportation industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the Vehicle Routing Problem (VRP) and its related variants is at the heart of scientific research for optimizing logistic planning. One important variant of the VRP is the Pickup and Delivery Problem (PDP). In the PDP, it is generally required to find one or more minimum cost routes to serve a number of customers, where two types of services may be performed at a customer location, a pickup or a delivery. Applications of the PDP are frequently encountered in every day transportation and logistic services, and the problem is likely to assume even greater prominence in the future, due to the increase in e-commerce and Internet shopping. In this research we considered two particular variants of the PDP, the Pickup and Delivery Problem with Time Windows (PDPTW), and the One-commodity Pickup and Delivery Problem (1-PDP). In both problems, the total transportation cost should be minimized, without violating a number of pre-specified problem constraints. In our research, we investigate heuristic and meta-heuristic approaches for solving the selected PDP variants. Unlike previous research in this area, though, we try to focus on handling the difficult problem constraints in a simple and effective way, without complicating the overall solution methodology. Two main aspects of the solution algorithm are directed to achieve this goal, the solution representation and the neighbourhood moves. Based on this perception, we tailored a number of heuristic and meta-heuristic algorithms for solving our problems. Among these algorithms are: Genetic Algorithms, Simulated Annealing, Hill Climbing and Variable Neighbourhood Search. In general, the findings of the research indicate the success of our approach in handling the difficult problem constraints and devising simple and robust solution mechanisms that can be integrated with vehicle routing optimization tools and used in a variety of real world applicationsEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Investigating heuristic and meta-heuristic algorithms for solving pickup and delivery problems

    Get PDF
    The development of effective decision support tools that can be adopted in the transportation industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the Vehicle Routing Problem (VRP) and its related variants is at the heart of scientific research for optimizing logistic planning. One important variant of the VRP is the Pickup and Delivery Problem (PDP). In the PDP, it is generally required to find one or more minimum cost routes to serve a number of customers, where two types of services may be performed at a customer location, a pickup or a delivery. Applications of the PDP are frequently encountered in every day transportation and logistic services, and the problem is likely to assume even greater prominence in the future, due to the increase in e-commerce and Internet shopping. In this research we considered two particular variants of the PDP, the Pickup and Delivery Problem with Time Windows (PDPTW), and the One-commodity Pickup and Delivery Problem (1-PDP). In both problems, the total transportation cost should be minimized, without violating a number of pre-specified problem constraints. In our research, we investigate heuristic and meta-heuristic approaches for solving the selected PDP variants. Unlike previous research in this area, though, we try to focus on handling the difficult problem constraints in a simple and effective way, without complicating the overall solution methodology. Two main aspects of the solution algorithm are directed to achieve this goal, the solution representation and the neighbourhood moves. Based on this perception, we tailored a number of heuristic and meta-heuristic algorithms for solving our problems. Among these algorithms are: Genetic Algorithms, Simulated Annealing, Hill Climbing and Variable Neighbourhood Search. In general, the findings of the research indicate the success of our approach in handling the difficult problem constraints and devising simple and robust solution mechanisms that can be integrated with vehicle routing optimization tools and used in a variety of real world applicationsEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Investigating heuristic and meta-heuristic algorithms for solving pickup and delivery problems

    Get PDF
    The development of effective decision support tools that can be adopted in the transportation industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the Vehicle Routing Problem (VRP) and its related variants is at the heart of scientific research for optimizing logistic planning. One important variant of the VRP is the Pickup and Delivery Problem (PDP). In the PDP, it is generally required to find one or more minimum cost routes to serve a number of customers, where two types of services may be performed at a customer location, a pickup or a delivery. Applications of the PDP are frequently encountered in every day transportation and logistic services, and the problem is likely to assume even greater prominence in the future, due to the increase in e-commerce and Internet shopping. In this research we considered two particular variants of the PDP, the Pickup and Delivery Problem with Time Windows (PDPTW), and the One-commodity Pickup and Delivery Problem (1-PDP). In both problems, the total transportation cost should be minimized, without violating a number of pre-specified problem constraints. In our research, we investigate heuristic and meta-heuristic approaches for solving the selected PDP variants. Unlike previous research in this area, though, we try to focus on handling the difficult problem constraints in a simple and effective way, without complicating the overall solution methodology. Two main aspects of the solution algorithm are directed to achieve this goal, the solution representation and the neighbourhood moves. Based on this perception, we tailored a number of heuristic and meta-heuristic algorithms for solving our problems. Among these algorithms are: Genetic Algorithms, Simulated Annealing, Hill Climbing and Variable Neighbourhood Search. In general, the findings of the research indicate the success of our approach in handling the difficult problem constraints and devising simple and robust solution mechanisms that can be integrated with vehicle routing optimization tools and used in a variety of real world application

    Solving the One-Commodity Pickup and Delivery Problem Using an Adaptive Hybrid VNS/SA Approach

    Get PDF
    Abstract. In the One-Commodity Pickup and Delivery Problem (1-PDP), a single commodity type is collected from a set of pickup customers to be delivered to a set of delivery customers, and the origins and destinations of the goods are not paired. We introduce a new adaptive hybrid VNS/SA (Variable Neighborhood Search/Simulated Annealing) approach for solving the 1-PDP. We perform sequences of VNS runs, where neighborhood sizes, within which the search is performed at each run, are adaptable. Experimental results on a large number of benchmark instances indicate that the algorithm outperforms previous heuristics in 90% of the large size test cases. Nevertheless, this comes at the expense of an increased processing time

    Solving the one-commodity pickup and delivery problem using an adaptive hybrid VNS/SA approach

    Get PDF
    In the One-Commodity Pickup and Delivery Problem (1- PDP), a single commodity type is collected from a set of pickup customers to be delivered to a set of delivery customers, and the origins and destinations of the goods are not paired. We introduce a new adaptive hybrid VNS/SA (Variable Neighborhood Search/Simulated Annealing) approach for solving the 1-PDP. We perform sequences of VNS runs, where neighborhood sizes, within which the search is performed at each run, are adaptable. Experimental results on a large number of benchmark instances indicate that the algorithm outperforms previous heuristics in 90% of the large size test cases. Nevertheless, this comes at the expense of an increased processing time

    BeamGA Median: A Hybrid Heuristic Search Approach

    Get PDF
    The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms

    Hybrid adaptive large neighborhood search algorithm for the mixed fleet heterogeneous dial-a-ride problem

    Get PDF
    The mixed fleet heterogeneous dial-a-ride problem (MF-HDARP) consists of designing vehicle routes for a set of users by using a mixed fleet including both heterogeneous conventional and alternative fuel vehicles. In addition, a vehicle is allowed to refuel from a fuel station to eliminate the risk of running out of fuel during its service. We propose an efficient hybrid adaptive large neighborhood search (hybrid ALNS) algorithm for the MF-HDARP. The computational experiments show that the algorithm produces high quality solutions on our generated instances and on HDARP benchmarks instances. Computational experiments also highlight that the newest components added to the standard ALNS algorithm enhance intensification and diversification during the search process
    corecore